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Abstract
We have developed a simulation model of the implantation of a negative charge
into an insulating target by a fixed and well-focused high-energy electron beam.
We are particularly interested in the evolution of the distribution of the charges
trapped during the bombardment.

Our simulation is based on a Monte Carlo method permitting us to account
for the various electron–insulator interactions. The charge carriers, unless
they are emitted into vacuum, are followed until they have lost most of their
kinetic energy. After that, they drift along the internal electric field lines before
getting trapped. The field generated by these trapped charges is calculated
self-consistently by solving the appropriate Poisson equation.

When the trapping site density is sufficiently high, the dynamics of the
charge is principally governed by the self-regulation of the total secondary
emission yield. The total number of implanted charges is therefore limited and
a quasi-stationary regime arises.

The charge distribution builds up, forming a negative semi-ellipsoidal shell
whose extent is directly related to the maximum penetration of the primary
electrons. The internal region corresponds to a mixing zone with a weak positive
mean charge. This characteristic distribution appears at all the primary beam
energies considered.

On the other hand, when the trapping site density is too low, the whole
region under the beam is saturated and the mixing zone is completely occupied
by electrons before the self-regulation of the total secondary yield acts.

1. Introduction

Charge accumulation in an insulator due to the application of an external stress (force,
temperature gradient, electrical field, particle irradiation, . . .) plays a leading role in the aging
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and breakdown of these materials [1,2]. These phenomena give rise to severe limitations when
the insulators are used in industrial applications (electronics, electric wires, aeronautics, . . .).
The charge represents also a major difficulty in quantitative analysis experiments which use
an electron beam or more simply for electron microscopy imaging [3].

The importance of the defects (in a broad sense) in charge-building physics in insulators
seems today well established. From a microscopic point of view [4, 5], the trapping of
excess charges on these defects gives rise to polarization effects in the medium, allowing
the storage of an important electromechanical energy. This latter can be released when
relaxation (detrapping) takes place. Breakdown may then follow when relaxation occurs
abruptly. In the hope of reducing the degradations caused by the application of a stress, it is
thus necessary to analyse not only the physical processes which take place, but also the nature
and the repartitioning of the defects which play a role in these processes (characterization of
the sample).

During the last 20 years, many characterization techniques have appeared (see for
instance [6] for a review of the methods developed). The use of an electron beam is particularly
interesting because it permits one to control the injection of the charge inside the target.
However, it remains difficult to extract from such measurements what is due to charge transport,
to trapping or to relaxation. Thus the interpretation of the results requires one to have access
to additional information such as the spatial distribution of the implanted charges or the
topography of the electric field and of the potential that they produce.

The use of computer simulations a priori allows one to solve this kind of problem. By
using the Monte Carlo method, Kotera and Suga [7] calculated the trajectories of electrons
injected in the presence of an electric field generated by a negative charge distribution assumed
to have been previously implanted in the target (frozen-in charge distribution). In particular,
they showed the relation between the value of the pre-implanted dose and the slowing-down
effect that it exerts on the primary beam. This dependence explains the reduction of the
effective energy of the beam and consequently that of the interaction volume compared to the
case of an uncharged sample. The calculations are nevertheless performed for a static charge
distribution for which no dynamic time evolution is accounted for.

This step has been achieved by Vicario and co-workers [8, 9]. Their simulation is based
on the use of the so-called ‘simple diffusion’ method. After they have lost most of their kinetic
energy, the charge carriers get trapped and contribute to the internal electrostatic field which
is self-consistently calculated. These authors were thus able to give the time evolution of
the implanted charge. Nevertheless, their description of the elementary processes remains
sometimes a little rough. In particular, to treat the secondary-electron emission they use
‘a priori’ models where the consequences of the presence of an electric field are not clearly
included.

During the last few years, insulator charging simulations have been performed for instance
in the context of electron beam lithography where the charge effects disturb the electron beam
and cause pattern displacement errors [10, 11]. This is also true for x-ray microanalysis [12]
where the depth distribution function for characteristic x-ray production (the so-called φ(ρz))
may be distorted, rendering the quantitative interpretation particularly difficult.

In this work, we have tried to model the implantation of a negative charge in an insulating
sample by describing the complete history of the electrons and of the holes excited during the
inelastic collisions. When they have lost their kinetic energy, the charge carriers drift along the
electric field lines until they stabilize on a trapping site. Thus they contribute to the electrostatic
field, which is calculated self-consistently.

After briefly recalling our model, we shall comment on the results we have obtained by
the simulation of the implantation of a dose of a few picocoulombs in an amorphous SiO2
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Figure 1. Total secondary-electron emission yield σ as a function of the primary energy Ep .
Comparison of the values obtained by simulation with the experimental data of [18–20]. The
simulated curve has been obtained by inhibiting the charge effects (standard emission curve).

target. We are primarily interested in the shape of the charge distribution obtained and in its
evolution during the electron bombardment. The influence of the primary energy and of the
density of trapping sites on the implanted charge behaviour will then be discussed.

2. Review of the electron–insulator interaction model

During the bombardment of an insulating target by an electron beam, the primary electrons
and the electron–hole pairs excited via the inelastic collisions have their trajectory and their
energy strongly influenced by the internal electric field which progressively develops in the
sample. To describe the history of these charge carriers, we use a Monte Carlo simulation
program.

In a first stage of its history, an injected electron follows the classical collision scheme
(elastic collisions, interactions with the electrons of the valence band, of the core shells,
collisions with the phonons). This has already been described elsewhere [9, 13–16].

In principle, this way of modelling the problem allows one to reproduce the experimental
secondary-electron emission yield curve in a situation where the charge effects are negligible.
In fact it has already been shown that the characteristics of the secondary emission curve is
strongly influenced by the low-energy electron transport processes. In particular the transition
from a free motion to a polaron state is essential for correctly accounting for the variation of
the total secondary emission yield with the primary energy [17].

The present simulation results are compared with the known experimental values for SiO2

targets [18–20] (figure 1). The agreement is gratifying, especially as our aim here is not to
reproduce accurately the characteristics of the secondary emission of a given sample but rather
to deduce general tendencies for the internal charge constitution. One notices that the cut-off
energy Ec2, for which σ = 1, is located near 1600 eV.

The original characteristic of our model concerns the introduction of the polarization
effects induced in the medium by the charges. At very low energies (typically under a few
eV), a charge carrier (electron or hole) can significantly interact with the lattice by means
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of electromechanical effects. From this, the particle, characterized by an increased effective
mass, will drift along the internal electric field lines, surrounded by its ‘polarization cloud’
(polaron scheme) [21–24].

Depending on the materials, the coupling between a charge carrier and the polarization
will be more or less important, leading to different localization radii for the polaron. The
coupling parameter α introduced by Fröhlich [25] allows one to calibrate the intensity of
these effects. The higher the value of α is, the stronger the interaction will be. In the case
of electrons injected in an amorphous SiO2 sample, one has α = 1.3 [26]. So, the effects
related to the interactions with the polarization field will remain rather weak. It follows that
the mobility of the electron–polaron is high. If one refers to Hughes [26] or Fitting [27], a
value of µe = 20 cm2 V−1 s−1 can be retained for the mobility.

For the holes, the situation is more complex. By reference to the results obtained by
Hughes and Emin [28, 29], for amorphous SiO2, several regimes can be distinguished. When
it has just been created by pair excitation, a hole has a rather high mobility. In the following
phase its mobility falls abruptly and can, according to Hughes and Emin [29], become of the
order of 10−6 times that of an electron. This effect is commonly attributed to the formation of a
small polaron [28,29]. Finally, after the first trapping event, the hole moves slowly by hopping
and exhibits a dispersive transport. In the present work, we have simply taken a ‘compromise’
value µh = 0.01 cm2 V−1 s−1 for the mean mobility of a hole to account for the first two
phases in a global way.

The polarons can be stabilized when they encounter an empty trapping site. Charge
trapping is indeed a complex problem which has been discussed by many authors (see for
instance [30] or [31]). In particular, the nature of the traps may be quite varied (charged
or neutral impurities, dislocations, grain boundaries, . . .) and their concentration can differ
considerably from one sample to the other. For instance, Cazaux [3] indicates the following
values of trapping site densities for different kinds of material: Nt ≈ 1022 cm−3 for an
amorphous sample, about 1016 cm−3 for a crystal with impurities and from 1017 to 1020 cm−3

for polycrystals.
In a polarizable medium, besides the influence of these traps, extrinsic by nature, one has to

account for self-localization effects for the charge carriers which have formed polarons [15,16].
The density of these intrinsic traps can be much higher, a priori of the order of the molecular
density, typically 1022 sites cm−3.

On account of the great diversity of the possible trapping sites and also due to the lack
of proper scattering cross-sections for the interactions of the charge carriers with these traps,
it is an essentially qualitative approach that has been retained for the present study. We have
made the hypothesis that all the trapping effects can be characterized as a whole by a mean
scattering cross-section [15,16]. According to this description, as soon as a polaron penetrates
into a given cell with available trapping sites, there is every chance that it stabilizes there.

The traps are supposed to be uniformly distributed in the volume of the target. They are
assumed to be initially neutral, so that either electrons or holes can fix there.

Three situations can then occur. If the trapping site is empty, the polaron can fix. If it is
occupied by a carrier of the same sign, an exclusion effect takes place. The polaron is not able
to fix there and it drifts again by following the field lines. Finally, if the site is occupied by a
carrier of opposite sign, the polaron recombines. The site is thus liberated and both charges
leave the transport process.

In order to simplify the calculations, the possibility of electron or hole detrapping by the
internal field has not been included in the present version of our model. In fact, we have
supposed that the traps are sufficiently deep to ensure the stability of the charge distribution
throughout the simulated experiment.
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As already indicated, the charges accumulated in the target generate an electrostatic field
which modifies the particle trajectories. Under this influence the charge distribution is itself
modified, and so on, so the calculations have to be made self-consistently.

From a given charge distribution implanted in a uniform medium, it is possible to evaluate
the potential anywhere by using Poisson’s equation. This latter can be solved by using a
finite-difference algorithm [32].

3. Simulations in the negative charge regime

As the charge of the insulator depends both on the characteristics of the target and on those of
the primary beam, for the calculations presented here, we have tried to reproduce at best the
conditions encountered in an electron microscopy experiment.

Concerning the primary beam, the intensities I usually selected for the primary current
are of the order of 10−9–10−10 A [33]. Here we have considered the case of a highly focused
primary beam, with a spot diameter d = 5 nm at the surface of the sample. The irradiated
surface is S ≈ 20 nm2 (i.e. 2 × 10−13 cm2). The primary current density is then of the order
of j = 5 × 102 A cm−2. The primary beam intensity is directly related to the time τp between
two successive arrivals of electrons at the surface: τp = |e|/I , where e represents the electron
charge (10−19 C). By using a beam intensity of 10−9 A, one thus obtains τp = 0.1 ns.

In order to lead to a negative charging regime, the kinetic energy Ep of the primary beam
electrons has typically to be of a few keV (Ep > Ec2).

The parameters related to the target (density of traps, carrier mobility, . . .) are intended to
fit the case of amorphous SiO2. However, we presume that the results that we have obtained
have a much broader validity and are representative of what happens in most insulators.

For SiO2, the atomic density is 3×1022 cm−3. On account of the presence of both intrinsic
and extrinsic trapping sites, we are led to use a mean trapping site density Nt of 1019 cm−3,
i.e. of a little more than one site per cubic cell of 5 nm side length.

3.1. General behaviour in the negative charge regime

A first study has been performed by using a primary beam energy Ep = 2500 eV—that is, a
value close to the cut-off energy (Ec2 ≈ 1600 eV). The simulation makes use of a statistical
sample of 108 primary electrons, which is equivalent to an injected dose of 16 pC and a total
irradiation time of 10 ms. The injected dose is thus of the order of magnitude of that used
during an electron microscopy experiment. The density of trapping sites for this first study
has been fixed at Nt = 1.6 × 1019 cm−3.

For the primary energy considered, the computed initial value of the total secondary-
electron emission yield σ is close to 0.75 (see figure 1). During the bombardment, the electrical
neutrality of the sample is destroyed, leading to an excess of negative charges in the sample.
The surface potential in the impact zone of the primary beam, Vs , becomes more and more
negative, resulting in a slowing down of the primary electrons before they penetrate into the
sample. The effective energy of the beam at the point of impact is thus Eeff = Ep + |e|Vs ,
so the total secondary emission yield σ (which includes the true secondary electrons and the
backscattered ones) increases during the bombardment (figure 2). Let us nevertheless remark
that σ always remains lower than unity, which implies that the number of excess negative
charges continuously increases (figure 3). Thus, the surface potential Vs itself decreases
progressively (figure 4).

The evolution of the system goes on as long as the total secondary emission yield is still
lower than unity (self-regulation of the yield). When σ reaches unity, the system is indeed
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σ

Figure 2. Evolution of the total secondary-electron emission yield σ as a function of the injected
primary dose. The primary energy is Ep = 2500 eV and the density of trapping sites is
NT = 1.6 × 1019 cm−3.

Figure 3. Evolution of the dose of trapped electrons and holes as a function of the injected
primary dose. The primary energy is Ep = 2500 eV and the density of trapping sites is
NT = 1.6 × 1019 cm−3.

globally in a stationary state: one secondary electron is emitted for each injected primary
electron. As a consequence, the number of excess charges stabilizes to a practically constant
value (figure 3), and Vs reaches a limit value, here close to −600 V (figure 4). In figures 2–4,
one remarks that the quasi-stationary state is reached as soon as a dose of about 0.3 pC has
been injected.

In this calculation, all the excess charges are fixed in traps. The number of itinerant
polarons (electrons or holes) is practically zero throughout the simulation.

Figure 3 allows us to distinguish three steps in the building up of the charge. In the first
step, until the injection of a primary dose of about 0.04 pC, the numbers of trapped electrons
and holes regularly increase. In the second step, from 0.04 to about 0.3 pC, the number of
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Figure 4. Evolution of the potential at the impact pointVs as a function of the injected primary dose.
The primary energy is Ep = 2500 eV and the density of trapping sites is NT = 1.6 × 1019 cm−3.

trapped holes decreases rapidly. The electrons, however, continue to be trapped. After the
injection of 0.3 pC, the quasi-stationary regime is reached and the numbers of positive and
negative carriers getting fixed in traps increase very slowly.

Figure 5 enables us to understand the origin of this behaviour. The panels represent the
evolution of the spatial distribution of the trapped charges during the bombardment. For
readier comprehension, densities of trapped charges have been presented. The negative
charge densities are shown in black, the positive ones in white. Moreover, they have
been normalized to that of the trapping sites in order to make the saturated regions more
apparent.

Figure 5(a) corresponds to the injection of 0.04 pC. It is thus representative of the first stage
of the charge. In this state, two very distinct zones appear. The external region is populated by
trapped negative charges. It has the shape of a ‘shell’, delimited by two axi-symmetrical half-
ellipsoids elongated along the z-axis. It surrounds an internal zone, quite mixed and almost
entirely populated by holes.

The half-lengths of the major axes (z-direction) are approximately Z1 = 180 nm and
Z2 = 220 nm; those of the minor axes (ρ-direction) are aboutR1 = 100 nm andR2 = 160 nm.
These values are quite comparable with the maximum penetration depthZmax and the maximum
lateral dispersion length Rmax of the primary electrons. Figure 6, where the values taken by
these two quantities as functions of the primary energy are reported, actually indicates that
Zmax = 200 nm and Rmax = 160 nm when Ep = 2500 eV.

In this first stage of the charge, the penetration is not much influenced by the diminution
of the effective energy. The surface potential, after injection of 0.04 pC, is close to −200 V
(figure 4). This corresponds to a reduction of Zmax and of Rmax of about 20 nm, i.e. a relative
reduction of 10%.

The trapping of the negative charges in the shell is made possible because very few holes
can be found there. The slow negative carriers can reach regions more remote from the impact
zone than the holes. These latter are trapped just at the excitation position of the pair and the
recombination processes are practically non-existent in the shell periphery.

From the simulation, the mean density of negative charges in this zone can be estimated
as 1.5 × 1019 cm−3, which practically corresponds to the saturation of the trapping sites.
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(a) (b)

(c) (d)

Figure 5. Trapped charge density for different injected primary doses: (a) 0.04 pC, (b) 0.3 pC,
(c) 1 pC, (d) 10 pC. The primary energy is Ep = 2500 eV and the density of trapping sites is
NT = 1.6 × 1019 cm−3. The negative charges are represented in black, the positive charges in
white. The maximum intensity of the greyscale corresponds to NT .

The central region is the mixing zone where the electron–hole pairs are produced. It
determines, at any time, the internal limit of the negative shell. At 2500 eV, the number
of excited pairs per primary electron is close to 100. A simple calculation of the order of
magnitude shows that most of them recombine. For instance, about 4 pC of holes are excited
after the injection of a 0.04 pC dose. However, only 0.006 pC of trapped holes are found to
remain, which means a 0.15% rate.

The second phase of the charge is characterized by the elimination of trapped holes. As
shown by figure 5(b), corresponding to the injection of 0.3 pC, it is the interior part of the
negative charge shell that has principally grown. One finds Z1 = 140 nm and R1 = 100 nm.
For this primary dose, the effective energy Eeff is about 1900 eV. The maximum penetration
depth is then Zmax = 135 nm and the maximum lateral dispersion length is Rmax = 110 nm.
The volume of the mixing zone has thus progressively diminished and the electrons have
gradually eliminated the holes at its periphery (see also figure 3).

Beyond the primary dose of 0.3 pC, the system is practically in a quasi-stationary state and
the total implanted charge remains globally constant. Figures 5(c) and 5(d) represent the spatial
distribution of the trapped charges after the injection of 1 and 10 pC respectively. For this last



Negative charge of an insulator due to an electron beam 239

(a)

(b)

Figure 6. The maximum range of the primary electrons deduced from our simulations:
(a) maximum penetration depth Zmax, (b) maximum lateral dispersion Rmax.

phase of the charge, the effective energy is constant. The size of the mixing zone no longer
changes. The primary electrons always tend to be trapped in the same region, escaping thus
to possible recombination. This explains why the numbers of negative and positive carriers
increase simultaneously.

One must not however forget that the capacity of a given region to accept trapped charges
is limited by the density of traps of the material. So the negative shell will very quickly get
saturated, as already shown in figure 5(c), and the primary electrons can no longer be trapped.
They will have the choice of either being driven back to the mixing zone and recombining or
migrating toward the exterior of the charged zone. This latter effect is confirmed by figure 5(d)
where one observes that the negative shell actually spreads out. This phenomenon is however
very slow and only the injection of a massive dose of primary electrons (10 pC) has permitted
us to evidence it.

Finally, the external dimensions of the charged zone remain of the order of magnitude of
the maximum penetration lengths Zmax and Rmax (see figure 6). The volume of the negative
shell is about 10−14 cm3, leading to a mean density of negative charge of 2 × 1019 cm−3 in
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Table 1. Characteristic parameters for the trapped charge at different primary energies.

Ep (eV) QStab (pC) QTrap (pC) σinit NP π Qe (pC) Qh (pC) Rh/e (%)

2 500 −0.32 −0.03 0.75 100 0.09 −0.032 0.004 12.5
5 000 −1.3 −0.23 0.5 200 0.18 −0.27 0.04 13.9

10 000 −4.0 −1.36 0.4 380 0.34 −1.7 0.34 19.8

this zone. Though it is necessarily overestimated, this value shows that the trapping sites are
practically saturated in the negative shell. For the internal mixing zone, one can estimate that
the mean density of trapped holes is of the order of 5 × 1018 cm−3.

The charge balance itself shows that the dose of trapped electrons only represents a small
part of the injected dose. At the beginning of the quasi-stationary regime, the trapping yield
(number of trapped charges divided by the injected ones) is of the order of 10%. Of course it
falls further for more important primary doses until it finally tends to zero. In this phase, the
trapped holes only represent about 10% of the trapped electron number.

Let us recall that various electrostatic mirror experiments [34, 35] also suggest an ‘in-
shell’ distribution of the implanted charges. This causes, after the vanishing of the mirror,
the appearance of a ring of negative charges at the surface of the sample, surrounding a very
weakly charged region. The mean diameter of the ring is of the order of magnitude of the
primary electron penetration depth and the measured trapping abilities are quite comparable
with what we obtain by simulation.

3.2. Influence of the primary energy

It is important to know whether the general behaviour described above is also operative for
all the primary energies in the negative charge domain. For this we have simulated the
bombardment of the same amorphous SiO2 target for Ep = 5000 and 10 000 eV, the other
parameters of the simulation remaining unchanged.

Figures 7(a) and 7(b) respectively present the evolution of the number of trapped electrons
and that of the number of trapped holes during the bombardment for the three primary energies
retained here. The three charge phases detailed in the preceding paragraph are found again in
each case. In order to make the interpretation of the curves easier, some important quantities
have also been collected in table 1.

For each simulation that we present, the self-regulation of the yield occurs and the system
attains a quasi-stationary regime after injection of a primary dose QStab. This dose is all the
more important as the initial energy Ep of the beam is high. This is a consequence of the
variation of the penetration depth of the primary electrons [36], which is more pronounced at
high energies (figure 6(a)).

When the quasi-stationary regime is reached, the total trapped dose QTrap also increases
with Ep. It represents about 9% of the injected dose at 2500 eV, 18% at 5000 eV and 34%
at 10 000 eV. One could think that this is simply the result of changing the initial value of the
total secondary emission yield σinit . However, one easily understands, by referring to table 1,
that this variation is not sufficient to explain the observed evolution. On the other hand, one
observes in the same table that the proportionNp of the electron–hole pairs excited per primary
electron varies practically linearly withEp in the energy range that we are concerned with. This
explains the above-mentioned increase of the trapped dose. One also notices that the charging
capacity π = QTrap/QStab is, for all the primary energies considered, constantly inversely
proportional to Np. So, the trapping yield π , as soon as the system becomes stabilized, is
given, in a first approximation, by a law of the type π = AEp, with A ≈ 3.5 × 10−2 keV−1.
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(a)

(b)

Figure 7. Evolution of the implanted dose as a function of the injected dose for different primary
energies EP . (a) Electrons, (b) holes.

This is only valid if the recombination rate remains constant at each primary energy. In
all the cases that we have investigated here, the trapped hole dose Qh remains much lower
than that of the trapped electrons Qe (table 1). At 2500 eV, the proportion of the two types of
population, Rh/e, is of the order of 12%. It reaches 14% at 5000 eV and 20% at 10 000 eV,
showing a non-negligible dependence of the recombination rate on Ep. However, on account
of the small fraction of trapped holes compared to the electrons, the recombination plays only
a secondary role.

The panels of figure 8 show the charge distributions in the quasi-stationary state for primary
energies of 5000 eV (a) and 10 000 eV (b). The characteristic ‘in-shell’ shape is present in both
cases and the external dimensions are always of the order of the maximum penetration depth
and of the maximum lateral dispersion of the primary beam. We actually obtain Z2 = 550 nm
andR2 = 480 nm for a Zmax of 570 nm and anRmax of 510 nm at 5000 eV. At 10 000 eV, these
values become Z2 = 1650 nm, R2 = 1300 nm, Zmax = 1800 nm and Rmax = 1650 nm. Let
us however remark that, on account of the contrasts used in figure 8, the values of Z2 and R2

are difficult to estimate.
The internal delimitation of the negative shell is much less sharp than in theEp = 2500 eV

case. In fact, the slowing down of the primary beam is all the more marked as the primary
energy is high. In the case of a bombardment at 5000 eV, the effective energy of the beam Eeff
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(a) (b)

Figure 8. Densities of trapped charges for different primary energies. (a) Ep = 5000 eV,
(b) Ep = 10 000 eV. In both cases the maximum intensity of the greyscale corresponds to
NT = 1.6 × 1019 cm−3. The charge states indicated are representative of a system in which
the quasi-stationary regime has been reached. This corresponds to an injected primary dose of:
(a) 2 pC, (b) 4 pC.

falls to 2600 eV at the end of the charging. The maximum penetration of the electrons decreases
fromZmax = 570 nm to a final value of 205 nm. The same holds forRmax. For a bombardment
at 10 000 eV, Zmax goes from 1800 to 250 nm! In these conditions, the negatively charged
region is now disseminated over an important thickness, nearly 1500 nm at Ep = 10 000 eV.
Let us finally remark that the negative shell is no longer uniformly charged as in the case
of a primary energy of 2500 eV. The slowing down takes place too rapidly and the primary
electrons cannot annihilate all the holes present there to uniformly fill the zones concerned.

3.3. Influence of the density of trapping sites

We have carried out simulations for a primary energy Ep = 2500 eV, for different trapping
site densities NT . The values retained were 1.6 × 1018, 1.6 × 1019 and 1.6 × 1020 cm−3.
This corresponds respectively to one trapping site in a volume of 625 × 103, 625 × 102 and
625 × 101 Å3, which represents approximately one site per 5 × 103, 5 × 102 and 5 × 101 SiO2

molecules.
The simulations were continued until the quasi-stationary regime was attained, except for

the case ofNT = 1.6×1018 cm−3. In this latter situation, the calculations become excessively
long as soon as the injected dose reaches 0.03 pC. We will try to determine the origin of this
limitation in what follows.

For the two highest densities of sites, the regulation of the yield occurs correctly. The
quasi-stationary state is attained for injected doses which are very similar in the two cases, i.e.
about 0.3 pC. On account of the low value of the injected dose, the regulation is just beginning
in the case NT = 1.6 × 1018 cm−3.

In figures 9(a) and 9(b), we have reported the evolution of the doses of trapped electrons
and of trapped holes during the charging. The three charge phases are always present for
high densities of trapping sites. The implanted doses stabilize at limit values which, quite
logically, grow with increasing NT . The total implanted dose QTrap is −0.035 pC when
NT = 1.6 × 1020 cm−3, whereas it is −0.028 pC in the case where NT = 1.6 × 1019 cm−3.
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(a)

(b)

Figure 9. Evolution of the implanted dose as a function of the injected dose for different densities
of trapping sites NT . (a) Electrons, (b) holes. The primary energy is Ep = 2500 eV.

The dependence of QTrap on NT is however difficult to determine from these two examples.
Let us also remark that in the case of NT = 1.6 × 1020 cm−3, the numbers of trapped electrons
and holes always increase in the third charge regime. The global charge remains nevertheless
constant. We will see hereafter that in this situation the traps are far from being saturated.

The balance of the trapped charges also varies with NT . The ratio of the trapped
populations for the two types of carrier reduces when the density of sites increases. While it
attains 1 against 10 in favour of the electrons for NT = 1.6 × 1018 cm−3, it falls to 1 against 6
forNT = 1.6×1019 cm−3 and to 2 against 3 forNT = 1.6×1020 cm−3. This can be explained
by the fact that the recombination processes play a leading role when the number of places
available for trapping decreases.

In all the cases that we have studied up to now, the number of itinerant polarons (electrons
and holes) was always approximately zero throughout the charging. The situation is however
quite different for the low trapping site densities (NT = 1.8 × 1018 cm−3). Study of
figure 10, which shows the evolution of the number of itinerant carriers during the simulation,
is particularly instructive. It appears indeed that the electrons in that case encounter more
and more difficulty in getting trapped. First, the number of negative carriers is limited by
the recombination with itinerant holes. These latter disappear progressively and their number
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Figure 10. Evolution of the number of itinerant carriers during the simulation. The primary energy
is Ep = 2500 eV and the density of trapping sites is NT = 1.6 × 1018 cm−3.

(a) (b)

Figure 11. Densities of trapped charges for different densities of trapping sites. (a) NT =
1.6 × 1020 cm−3, (b) NT = 1.6 × 1018 cm−3. The primary energy is Ep = 2500 eV. The
maximum intensity of the greyscale corresponds to NT .

remains practically zero as soon as the injection attains 0.02 pC. The proportion of itinerant
electrons then begins to increase. This phenomenon is obviously related to the saturation of
the traps.

Figure 11(a) accounts for the charge state in the quasi-stationary regime, for NT =
1.6 × 1020 cm−3 (see figure 5(b) for the case of NT = 1.6 × 1019 cm−3). The external
dimensions are still given by the maximum penetration of the primary electrons.

When the density of trapping sites is high (NT = 1.6 × 1020 cm−3), at this stage of the
injection, the traps are still weakly occupied (figure 11(a)). The calculations indicate that
the maximum density of occupation is obtained under the impact zone, with a value close
to 0.8 NT . In the negative shell, the density of trapped electrons is only of the order of
1.9 × 1019 cm−3. With reference to its dimensions, one can roughly estimate the volume of
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the wall to be 7.8 × 109 Å3. By using the total number of trapped charges given by figure 9,
one would obtain a density of trapped electrons close to 2.4 × 1019 cm−3 if all of them were
located in the wall, a value not too far from the above one.

The next figure 11(b) corresponds toNT = 1.6×1018 cm−3. The maximum dimensions of
the charged zone remain of the same order as the penetration distance of the primary electrons.
One notices that not only is the charged region saturated, but also the whole mixing zone is now
occupied by trapped electrons. The volume estimated for this zone is about 1.1×1010 Å3. The
maximum number of carriers that can get trapped there is then 1.8 × 104. However, figure 9
indicates that the total trapped charge is about 0.03 pC, i.e. 1.9 × 104 electrons. This shows
that no more room is available as soon as this dose has been implanted.

In this system state, the electrons that issued from the cascade remain captive in the mixing
zone. The electric field produced by the carriers that have already fixed prevents them from
reaching neutral external regions. They can still recombine with the holes, itinerant or trapped.
However, on account of a total secondary emission yield lower than unity, the positive carriers
are always in a smaller proportion than the negative ones and they are progressively eliminated.
Then, the number of itinerant electrons never stops increasing (figure 10), causing extreme
slowing down of the simulation development. In this latter case, the maximum dose of trapped
electrons is no longer limited by the self-regulation of the total secondary emission yield, but
is now limited by the density of trapping sites.

Let us also remark that this confining situation takes much longer to attain for higher
primary energies, this effect being accompanied by an increase of the maximum dose that can
be trapped.

4. Conclusions

In the present work, we have simulated the implantation of a negative charge by an electron
beam in an insulating target. The theoretical electron–insulator interaction model formerly
developed by us was used for this. The parameters retained for these calculations (injected
dose, primary beam energy) account for situations quite comparable with those encountered
in electron microscopy experiments.

We were particularly interested in the charge distribution produced by a fixed and well-
focused electron beam. In all the cases studied here, a semi-ellipsoidal negative shell builds
up, surrounding a mixing zone with a weak density of positive charge. Three different phases
appear in the building up of the charge.

The first step corresponds to the emergence of the negative shell. Its shape is obviously
governed by the penetration of the primary beam and by its progressive straggling in the
sample. This behaviour is common to all (homogeneous) materials but the actual size of this
zone depends on the interaction cross-sections appropriate to the medium studied. As already
indicated above, some simple empirical range–energy relations can be used to relate for instance
the penetration of the primary beam to the atomic number of the target. The consequence of the
formation of the shell is that an electrostatic field builds up which acts as a barrier for negative
carriers, which also favours their recombination with the positive charges. The itinerant charge
carriers are thus confined to the internal zone delimited by the negative shell.

Globally, the thickness of the shell increases along with the magnitude of the field, so
the penetration of the primary beam into the interaction zone is progressively reduced. This
reduction of the effective energy characterizes the second phase. The rate at which the thickness
of the shell grows is governed by the dynamics of the recombination and trapping processes,
which can differ substantially from one sample to the other (see [37,38] for instance). Several
other physical parameters (dielectric constant, structure defects, nature and density of trapping
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sites, electron and hole mobilities, recombination times for electrons and holes, material
modification by irradiation, . . .) will cause differences. This is obviously a huge problem
which could not be approached in the present context, where the attention was solely focused
on the role of the trap density.

The third phase corresponds to the stabilization of the charge, due to the self-regulation
of the secondary emission. In the negative charging regime, this regulation occurs when the
effective energy of the primary beam has increased to a value close to the cut-off valueEc2 and
the total secondary yield is equal to unity [39]. The dynamics of this process depends on the
sample characteristics. For instance, the final surface potential practically equalsEp−Ec2 and
SiO2 (Ec2 ∼ 1600 eV [18–20]), in this respect, is quite different to MgO (Ec2 ∼ 27 keV [15])
and to Al2O3 (Ec2 ∼ 8 keV [15]). In the stabilization phase, the density of trapping sites also
plays a central role. For instance, in the case where this density is weak, the sites are rapidly
saturated and the total secondary emission yield never reaches unity. Our simulation does not
permit us to follow the charge evolution any longer.

The results that we have presented apply well to the case where the activation energies of
the traps are high. A next step in our work is including the possibility of charge detrapping
processes and simulating situations where the relaxation effects can play a significant role.

The present calculations have to be seen in the more general framework of the
characterization of insulating materials. Up to now, the experimental techniques, such as
the scanning electron microscope mirror method (SEMM), have given interesting information
on the potential distribution generated by an implanted charge. However, the inverse problem,
which consists in deducing the charge distribution from the potential, is much more difficult,
as the solution is generally not unique. Our simulations of charge implantation, based on
physical arguments, can be used to build models in order to estimate the charge distribution
extent and also for instance the density of traps.
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